

## PolyX at SOLARIS: layout and specification

Poster/Oral Presentation Date of presentation Time of presentation K. M. Sowa<sup>1\*</sup>, P. Wróbel<sup>2</sup>, T. Kołodziej<sup>1</sup>, M. Zając<sup>1</sup>, W. Błachucki<sup>3</sup>, F. Kosiorowski<sup>2</sup> and P. Korecki<sup>1,4</sup>,

<sup>1</sup>SOLARIS National Synchrotron Radiation Centre, ul. Czerwone Maki 98, 30-392 Kraków, Poland <sup>2</sup>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

<sup>3</sup>Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland

<sup>4</sup>Insitute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland

PolyX beamline for X-ray microimaging (spatial resolution 200 nm – 2  $\mu$ m) and scanning microspectroscopy (spatial resolution 2  $\mu$ m – 200  $\mu$ m) is under construction at National Synchrotron Radiation Centre SOLARIS. Start of operation is expected in 2023. In this Contribution, we will present the layout of the beamline and describe optical, detection and acquisition systems at PolyX. The most important predicted parameters and components of PolyX are summarized in Table 1.

**Table 1** PolyX beamline specification

| Source                                | Bending magnet (critical energy ~2keV)                                                                                                             |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Beamline length                       | ~15 m                                                                                                                                              |
| Energy range                          | 4 – 15 keV                                                                                                                                         |
| Operation modes                       | "White beam": 1013 ph/s/mm2                                                                                                                        |
|                                       | "High flux": double multilayer monochromator (DMM): $10^{11}~\text{ph/s/mm2}$ (@8 keV), BW 1-2%                                                    |
|                                       | "High resolution": double crystal Si(111) monochromator (DCM): $10^9$ ph/s/mm2 (at 8 keV), BW $2\times10^{\text{-}4}$                              |
| Max. beam size                        | 20 mm (H) × 3 mm (V)                                                                                                                               |
| Min. focus size                       | Polycapillary: 8 μm – 200 μm                                                                                                                       |
|                                       | Monocapillary: 2 μm                                                                                                                                |
| Max. flux in 10 μm focal spot @ 8 keV | DMM: 10 <sup>11</sup> ph/s                                                                                                                         |
|                                       | DCM: 10 <sup>9</sup> ph/s                                                                                                                          |
| Sample<br>environment                 | Air, helium, low vacuum + user setups                                                                                                              |
| Main techniques                       | X-ray microimaging and μCT (absorption and phase-contrast), μXRF, μXAFS,                                                                           |
|                                       | Non-routine: confocal $\mu XRF$ , $\mu XRF$ tomography, $\mu XRD$ + user ideas                                                                     |
| Detectors                             | Two 80 mm <sup>2</sup> Vortex SDD, 1M Hybrid pixel detector (Eiger 1M), x-ray microscope (Optique Peter with PCO), ionization chambers, PIN diodes |

**Acknowledgements:** The construction of PolyX is financed by Ministry of Polish Ministry of Science and Higher Education (6991/IA/SP/0010/2019). KMS acknowledge the support from the Foundation for Polish Science (FNP).

<sup>\*</sup>e-mail: k.sowa@uj.edu.pl